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As the most common type of dementia, Alzheimer’s disease (AD) is a neurodegenerative

disorder initially manifested by impaired memory performances. While the diagnosis

information indicates a dichotomous status of a patient, memory scores have the

potential to capture the continuous nature of the disease progression and may provide

more insights into the underlying mechanism. In this work, we performed a targeted

genetic study of memory scores on an AD cohort to identify the associations between

a set of genes highly expressed in the hippocampal region and seven cognitive scores

related to episodic memory. Both main effects and interaction effects of the targeted

genetic markers on these correlated memory scores were examined. In addition to

well-known AD genetic markers APOE and TOMM40, our analysis identified a new

risk gene NAV2 through the gene-level main effect analysis. NAV2 was found to be

significantly and consistently associated with all seven episodic memory scores. Genetic

interaction analysis also yielded a few promising hits warranting further investigation,

especially for the RAVLT list B Score.

Keywords: genetic associate study, correlated phenotypes, hippocampus, episodic memory, Alzheimer’s disease

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that is initially manifested by impaired
memory function. Heritability of AD has been estimated to range from 58 to 79% with the evi-
dence collected from familial aggregation, transmission patterns, and large scale twin studies. The
lifetime risk of the first-degree relatives of patients can be twice that of the general population (Gatz
et al., 2006; Ertekin-Taner, 2010). Given its high heritability, many genetic studies in AD have been
performed, including linkage analysis, candidate gene analysis, and genome-wide association study
(GWAS). While apolipoprotein E (APOE) has been first found (Saunders et al., 1993) and later fre-
quently replicated in many studies (Shen et al., 2010; Hollingworth et al., 2011; Shi et al., 2012),
some other markers have also been reported in recent GWAS studies, such as bridging integrator 1
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(BIN1) (Hu et al., 2011; Lee et al., 2011) , clusterin (CLU)
(Harold et al., 2009; Lambert et al., 2009; Lee et al., 2011),
ATP-binding cassette, sub-family A (ABC1), member 7 (ABCA7)
(Hollingworth et al., 2011), complement component (3b/4b)
receptor 1 (CR1) (Lambert et al., 2009), phosphatidylinositol
binding clathrin assembly protein (PICALM) (Harold et al.,
2009; Lee et al., 2011), EPH receptor A1 (EPHA1) (Holling-
worth et al., 2011), CD33 molecule (CD33) (Hollingworth et al.,
2011), Membrane-Spanning 4-Domains (MS4A4A/MS4A6A),
CD2-associated protein (CD2AP) (Naj et al., 2011), and 11 new
suspectibility loci recently identified in Lambert et al. (2013).

While traditional genetic association studies mostly focus on
analyzing the case control status as the phenotype, they are not
designed for revealing genetic risk factors associated with rel-
evant quantitative phenotypes where hidden signals may have
appeared long before the disease diagnosis is confirmed. Cogni-
tive measures have been used as highly relevant quantitative traits
(QTs) for neuropsychiatric conditions (Gottesman and Gould,
2003; Glahn et al., 2007), including AD (Bennett et al., 2009).
These intermediate measures quantitatively capture the progres-
sive nature of the disease and are believed to hold great promise in
identifying genetic risk factors. As one of the primary preceding
signals, memory decline has been observed in many AD patients
prior to diagnostically cognitive, behavioral, and social changes
(Backman et al., 2001). Thus, relating genetic markers to mem-
ory QTs, rather than diagnosis, has great potential to improve
the mechanistic understanding of the pathway from genetics to
cognition and then to diagnosis.

Accompanied with advances in high-throughput genotyping
techniques, substantial efforts have recently been made to facil-
itate the reliable identification of memory-related genes. Sev-
eral genes, including previously identified AD risk genes, have
been reported to contribute to the episodicmemory disturbances,
including APOE, CLU, BIN1, brain-derived neurotrophic factor
(BDNF), andWWand C2 domain containing 1 (WWC1/KIBRA)
(Egan et al., 2003; Burgess et al., 2011). Recently, a new risk gene,
FAST kinase domains 2 (FASTKD2), has been reported in the
GWAS of a large cohort (Ramanan et al., 2014). However, most of
these studies focus only on one specific episodic memory scores.
In this study, we aim to identify the genetic factors that are jointly
associated with multiple correlated episodic memory scores. This
may have the advantage of reducing the biases introduced by vari-
ability and outliers in the analysis of a single score, and also to
some extent consolidating and integrating the findings.

Existing genetic findings mostly consist of individual single
nucleotide polymorphism (SNP) markers or genes; and they typ-
ically explain a part of heritability but not all. To search for addi-
tional heritability, we extended our analysis to incorporate both
single marker tests and pair-wise SNP interaction tests. Given the
major combinatorial explosion challenge for SNP-SNP interac-
tion analysis, we performed our analysis in a targeted fashion
to make computation feasible. In this work, we only examined
the genes that are highly preferred to express in the hippocam-
pal region, which is a critical structure related to learning and
memory.We performed an association study to examine the rela-
tionships between the SNPs in these genes and seven cognitive
scores representing episodic memory, including two scores from

Logical Memory Test, and five scores from the Rey Auditory Ver-
bal Learning Test (RAVLT). We performed multiple comparison
correction, by considering both the correlation structure within
the genotyping data and that among memory scores.

Materials and Methods

Alzheimer’s Disease Imaging Initiative (ADNI)
Genotype and QT data used in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and
early AD. Determination of sensitive and specific markers of very
early AD progression is critical to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, and
to reduce the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Califor-
nia, San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was
to recruit 800 subjects but ADNI has been followed by ADNI-
GO and ADNI-2. To date these three protocols have recruited
over 1500 adults, ages 55–90, to participate in the research, con-
sisting of cognitively normal older individuals, people with early
or late MCI (EMCI or LMCI), and people with early AD. The fol-
low up duration of each group is specified in the protocols for
ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. Thousands of longitudinal imaging scans (Jack et al.,
2008; Jagust et al., 2010), performance on neuropsychological and
clinical assessments (Petersen et al., 2010) and biological samples
(Shaw et al., 2009) were collected at baseline and at follow-up vis-
its for all or a subset of participants. Genome-wide genotyping
data (Saykin et al., 2010) are available on the full ADNI sample.
For up-to-date information, see www.adni-info.org.

Subjects
To eliminate the possible bias introduced by population
stratification, this study was restricted to non-Hispanic Cau-
casian participants from both the ADNI-1 and ADNI-2/GO
cohorts. Subjects in other racial/ethnic groups were excluded
in the analysis due to the relative small number of those sam-
ples (less than 10%). We employed the population stratification
approach used in Kim et al. (2013). Briefly, 988 founders with
known ancestry information from HapMap phase 3 (HapMap3)
release 2 were used as reference data in the population stratifica-
tion step and merged with the ADNI samples. Multidimensional
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scaling (MDS) was performed using PLINK with identity-by-
state (IBS) pairwise distance matrix of the merged data. We com-
pared all ADNI participants with self-reported race/ethnicity as
“non-Hispanic/white” with HapMap3 samples in the MDS space,
and excluded those participants grouped with HapMap3 samples
whose ancestries were neither CEU nor TSI. As a result, 1149
non-Hispanic Caucasian participants were included in this study,
and their GWAS data passed the above population stratifica-
tion and all the other quality control (QC) procedures described
in Kim et al. (2013). Shown in Table 1 is the demographic
information for these subjects.

Candidate Gene Selection
Candidate genes were extracted based on the expression pro-
file obtained from the Allen Human Brain Atlas (AHBA)
(www.brain-map.org). AHBA provides a comprehensive expres-
sion mapping of∼60,000 probes (∼30,000 genes and transcripts)
across the human brain, with ∼1000 brain samples collected for
two full brains and ∼500 brain samples for the other six half
brains. In a recent study, extremely high similarity (95%) among
the expression profiles of these brain samples was reported (Zeng
et al., 2012), and therefore this study employed only one full brain
to identify the candidate genes. Expression data of all probes, tar-
geting 29,196 genes and transcripts, across the whole brain were
downloaded. Since the expression data was measured based on
the probes and each gene has several probes, we excluded those
genes whose multiple probe expression profiles do not correlate
very well (i.e., correlation coefficient <0.6). The final expression
level of each gene was measured based on the average of highly
correlated probes, while other probes were considered as outliers.
Each brain sample location in AHBA was mapped back to the
MarsBaR AAL atlas with 106 brain ROIs (Tzourio-Mazoyer et al.,
2002). We calculated the ROI level expression of each gene by
averaging the expression of all brain samples within each ROI.
Totally 66 out of 948 brain samples were located within the hip-
pocampal region defined by the MarsBaR AAL atlas. Ultimately
1957 genes with average expression level >8 and the hippocam-
pus as one of its top 1% expressed regions were extracted for
further analysis. The overall workflow is shown in Figure 1.

Genotype and Memory Data
Genotype data of all non-Hispanic Caucasian participants
from both ADNI-1 and ADNI-GO/2 were downloaded, qual-
ity controlled, imputed to the Illumina 610 Quad platform and
combined. As mentioned earlier, population stratification was
performed using the approach described in Kim et al. (2013) to
make sure that all the participants were non-Hispanic Caucasian.
Among all 1957 selected candidate genes, 25,134 SNPs from
1583 genes (boundary:±10 kb) were found based on ANNOVAR
(http://www.openbioinformatics.org/annovar/). Fifty six SNPs
from four genes with missing genotype data were excluded.
Totally our analysis included 1579 genes and 25,078 SNPs. Seven
episodic memory related cognitive scores (Table 2) were down-
loaded as memory QTs, including (1) immediate recall and
delayed recall scores from Logical Memory Test, and (2) trials
I–V, List B, immediate recall, 30-min delayed recall, and recog-
nition from Rey Auditory Verbal Learning Test (RAVLT). Final
analysis was performed using INTERSNP (Herold et al., 2009) to
examine both main and interaction effects. Pairwise interactions
were evaluated among all 25,078 SNPs.

Statistical Analysis
This work focuses on the analysis of the genes that are highly pre-
ferred to express in the hippocampal region. One of the goals is
to investigate both main and epistasis effects of these genes/SNPs
on the memory performance measured by seven correlated cog-
nitive scores. Traditional linear regression was first performed to
test the main effect of each SNP. A full genetic interaction model
was then applied on each pair of SNPs. Potential confounding
factors, including baseline age, gender, education, and handed-
ness, were incorporated as covariates in both analyses to exclude
their effects.

The whole procedure was performed using the INTERSNP
software (Herold et al., 2009). It was designed specifically for
genome wide interaction analysis of relating SNPs to the case
control conditions or various QTs. In this study, with memory
scores as QTs, two linear regression models were used to cap-
ture the influence of each interaction pair. The first model took
into account the main effects of both SNPs plus all the covariates

TABLE 1 | Demographics of participants.

HC eMCI LMCI AD

Number 325 191 427 206

Gender(M/F) 173/152 106/85 274/153 115/91

Handedness(R/L) 302/23 170/21 385/42 189/17

Age(mean ± std) 75.36± 5.32 70.80±7.37 74.49± 7.47 75.50± 7.98

Education(mean ± std) 16.27± 2.67 15.91±2.66 15.86± 2.94 14.95± 3.07

Log_Delay (mean ± std) 13.35± 3.34 8.88±1.71 3.87± 2.69 1.34± 1.95

Log_IMM (mean ± std) 14.14± 3.28 10.94±2.83 7.14± 3.14 4.10± 2.86

RAV_Recog (mean ± std) 12.89± 2.40 12.01±2.70 9.63± 3.65 7.19± 3.94

RAV_T6 (mean ± std) 8.22± 3.53 7.07±3.76 3.87± 3.22 1.70± 1.84

RAV_T30 (mean ± std) 7.29± 3.78 5.84±4.09 2.83± 3.31 0.73± 1.56

RAV_TB (mean ± std) 5.01± 1.87 4.51±1.96 3.65± 1.54 2.89± 1.31

RAV_TOTAL (mean ± std) 43.69± s9.94 39.41±10.70 31.04± 9.32 22.63± 8.16
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FIGURE 1 | Complete workflow for candidate gene selection.

TABLE 2 | Description of seven episodic memory scores.

Cognitive Score Description

Log_IMM Screening logical memory immediate recall

Log_Delay Screening logical memory delayed recall

RAV_TOT Baseline RAVLT total score

RAV_TOT6 Baseline RAVLT—trial 6 total number of words recalled

RAV_TOTB Baseline RAVLT—List B total number of words recalled

RAV_T30 Baseline RAVLT—30min delay total

RAV_Recog Baseline RAVLT—30min delay recognition score

mentioned above, while the second model had an extra interac-
tion term. Comparison between these two models yielded the
final interaction effect. Detailed information can be found in
http://intersnp.meb.uni-bonn.de/manual.html.

Correction for Multiple Testing
Due to the existence of the linkage disequilibrium (LD) struc-
tures within SNPs and high correlation among episodic mem-
ory measures (Table 3), direct application of either Bonferroni or
Benjamin Hochberg correction would be overly conservative and
may screen out a lot of potential signals with high false negative
rates. In this study, we first estimated the LD blocks in PLINK
using an independent data set from the 1000 Genomes Project,
and employed the estimated LD block number (NLD = 5004)
as the independent genetic test number. Similarly for seven cog-
nitive test scores, we estimated the number of independent QTs
based on eigenvalues (NiQT = 2) by applying the matrix spec-
tral decomposition, using the method described in Van Der Sluis

TABLE 3 | Correlation structure among seven memory scores.

Log_Delay 1.00 0.87 0.55 0.65 0.63 0.42 0.64

Log_IMM 0.87 1.00 0.51 0.62 0.57 0.43 0.66

RAV_Recog 0.55 0.51 1.00 0.64 0.65 0.38 0.63

RAV_T6 0.65 0.62 0.64 1.00 0.86 0.45 0.82

RAV_T30 0.63 0.57 0.65 0.86 1.00 0.50 0.81

RAV_TB 0.42 0.43 0.38 0.45 0.50 1.00 0.61

RAV_TOT 0.64 0.66 0.63 0.82 0.81 0.61 1.00

et al. (2013), Pedraza et al. (2014). In the analysis of main effects,
using SNP-level p-values as the input, we performed a gene-based
integration based on VEGAS (Liu et al., 2010), where gene level
significance was obtained through one million permutations and
further corrected for the gene number (NG = 1579) and the
estimated independent QT number (NiQT = 2) using the Bonfer-
roni procedure (i.e., corrected p-value = uncorrected p-value ×
(NG × NiQT)). In the analysis of interaction effects, multiple
comparison correction was also performed using the Bonferroni
procedure based on NLD(NLD − 1)/2 = 5004 × 5003/2 =

12, 517, 506 unique LD block pairs and the estimated indepen-
dent QT numberNiQT = 2 [i.e., corrected p-value= uncorrected
p-value×(12, 517, 506× 2)].

Results

Main Effects
Linear regression was first used to regress 25,078 SNPs on seven
cognitive scores, respectively. SNP level p-values obtained from
INTERSNP (see top SNPs in Supplemental Table S1) was further
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analyzed through VEGAS to obtain gene level p-values. Refer-
ence genome in VEGAS was changed to hg19 to be consistent
with our data set. Shown in Figure 2 are the Q-Q plots for the
genetic main effect analyses of seven cognitive scores. In total,
eight genes from six different chromosomes have been identi-
fied with corrected p-value ≤ 0.05 [i.e., uncorrected gene-level
p-values ≤ 0.05/(NG × NiQT) = 1.6E-05]. Shown in Table 4

are the gene findings along with p-values for seven cogni-
tive scores. As observed, the well-known AD risk gene APOE
is associated with six cognitive scores. Two genes are consis-
tently associated with all seven memory scores: neuron naviga-
tor 2 (NAV2) and Translocase Of Outer Mitochondrial Mem-
brane 40 Homolog (TOMM40), where TOMM40 is proximal
to APOE and has been reported to be associated with the
memory impairment (Berbee et al., 2011). Four other genes,
Protein Kinase, AMP-Activated, Gamma 2 Non-Catalytic Sub-
unit (PRKAG2), protein tyrosine phosphatase, receptor type,
D (PTPRD), CUGBP, elav-like family member 2 (CELF2), and
PDS5, regulator of cohesion maintenance, homolog B (PDS5B)
are each significantly associated with two cognitive scores. Proto-
cadherin 9 (PCDH9) is significantly associated with RAVLT list B
scores.

Interaction Effects
Similarly, interaction analysis was also performed based on the
linear regression model in INTERSNP, where the association
between each pair of 25,078 candidate SNPs and each of seven
cognitive scores was examined. After Bonferroni correction using
the estimated independent test number, no significant interaction

was observed for Log_Delay, RAV_TOT6, and RAV_T30. Two
interactions between gene PTPRD (rs598356 and rs610789, in
the same LD block) and gene KHSRP (rs2075755) were found
to pass the significance threshold of corrected p = 0.05 (or
uncorrected p = 2.0 × 10−9) for Log_IMM. Three interac-
tions, between FLJ39653 and SOX5, FBXO45 and SOX5, FHIT,
and PRB1, were found for RAV_Recog. Only one interaction,
between RCC2 and ZDHHC21, passed the significance threshold
in RAV_TOT test. A large number of interactions were observed
to affect RAV_TOTB, which was the list B recall score in RAVLT
test. In total, 71 interactions were identified among 46 genes with
corrected p = 0.05. Shown in Table 5 is the list of interactions
with uncorrected p ≤ 1 × 10−8, where bolded records indicate
significant interactions with corrected p ≤ 0.05. The list of inter-
action findings for RAV_TOTB is shown in Supplemental Table
S2, where 298 interactions have uncorrected p = 1 × 10−8, and
71 have corrected p = 0.05.

Discussion

Among all eight genes identified in our main effect analysis,
APOE is significantly associated with six cognitive scores, while
two other genes, NAV2, and TOMM40 are observed to be signif-
icantly associated with all seven cognitive scores. Two of them,
APOE and TOMM40 have been widely studied and known as
AD risk genes. For the new candidate gene NAV2, despite no
direct association has been previously reported between NAV2
and AD or episodic memory, its special role in neurite growth
and cell migration (Muley et al., 2008; Mcneill et al., 2010; Shioya

FIGURE 2 | Quantile-Quantile (Q-Q) plots for the main effect analyses of seven cognitive scores.
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TABLE 4 | Gene-level main effects identified in seven memory scores.

Chr 7 9 10 11 13 13 19 19

Gene PRKAG2 PTPRD CELF2 NAV2 PCDH9 PDS5B APOE TOMM40

Log_Delay orig_p 2.5E-03 2.5E-05 4.7E-04 <1.0E-06 5.0E-04 3.0E-06 <1.0E-06 <1.0E-06

corr_p NS NS NS <3.2E-03 NS 9.5E-03 <3.2E-03 <3.2E-03

Log_IMM orig_p 3.2E-04 1.0E-04 2.8E-05 <1.0E-06 4.5E-03 1.3E-05 <1.0E-06 <1.0E-06

corr_p NS NS NS <3.2E-03 NS 4.1E-02 <3.2E-03 <3.2E-03

RAV_Recog orig_p 9.3E-03 2.1E-03 3.2E-05 1.0E-06 1.7E-03 5.8E-02 <1.0E-06 <1.0E-06

corr_p NS NS NS 3.2E-03 NS NS <3.2E-03 <3.2E-03

RAV_T6 orig_p 4.0E-06 8.0E-06 1.1E-04 <1.0E-06 2.0E-02 4.2E-04 <1.0E-06 <1.0E-06

corr_p 1.3E-02 2.5E-02 NS <3.2E-03 NS NS <3.2E-03 <3.2E-03

RAV_T30 orig_p 4.8E-04 3.0E-06 1.5E-05 <1.0E-06 1.3E-03 2.4E-03 <1.0E-06 <1.0E-06

corr_p NS 9.5E-03 4.7E-02 <3.2E-03 NS NS <3.2E-03 <3.2E-03

RAV_TB orig_p 5.4E-02 5.1E-05 1.8E-03 2.0E-06 <1.0E-06 4.3E-04 1.2E-04 <1.0E-06

corr_p NS NS NS 6.3E-03 <3.2E-03 NS NS <3.2E-03

RAV_TOT orig_p 1.4E-05 2.0E-04 <1.0E-06 <1.0E-06 1.5E-03 3.9E-04 <1.0E-06 <1.0E-06

corr_p 4.4E-02 NS <3.2E-03 <3.2E-03 NS NS <3.2E-03 <3.2E-03

Both original and corrected p-values are shown. NS indicates “not significant” (i.e., corrected p > 0.05). Bolded records indicate significant associations with corrected p ≤ 0.05.

TABLE 5 | Interaction SNP pairs identified in Log_Delay, Log_IMM, RAV_Recog, RAV_TOT6, and RAV_TOT with uncorrected p ≤ 1 × 10−8.

Test Chr_1 rs_No_1 Gene_1 Dist_1 Chr_2 rs_No_2 Gene_2 Dist_2 p-value corr_p

Log_Delay 3 rs10866046 FHIT 0 5 rs255211 MCTP1 0 3.58E-09 0.090

9 rs598356 PTPRD 0 19 rs2075755 KHSRP 0 6.19E-09 0.155

9 rs610789 PTPRD 0 19 rs2075755 KHSRP 0 7.35E-09 0.184

Log_IMM 9 rs598356 PTPRD 0 19 rs2075755 KHSRP 0 8.74E-10 0.022

9 rs610789 PTPRD 0 19 rs2075755 KHSRP 0 1.16E-09 0.029

4 rs1980187 ENOPH1 0 4 rs17579878 ANK2 0 3.24E-09 0.081

4 rs6827820 ENOPH1 6647 4 rs17579878 ANK2 0 3.54E-09 0.089

3 rs213376 FHIT 0 6 rs6909677 SASH1 0 4.68E-09 0.117

RAV_Recog 4 rs6822469 FLJ39653 0 12 rs1464502 SOX5 0 4.77E-10 0.012

3 rs9843585 FBXO45 2925 12 rs16926727 SOX5 0 8.76E-10 0.022

3 rs17063416 FHIT 0 12 rs2059764 PRB1 –1550 1.44E-09 0.036

3 rs3915504 FHIT 0 14 rs17510215 NRXN3 0 4.1E-09 0.103

12 rs1513126 RASSF8 0 17 rs8066154 NUFIP2 0 4.38E-09 0.110

2 rs4849056 ZC3H8 −6928 9 rs10511506 PTPRD 0 7.99E-09 0.200

7 rs2190107 GPR37 0 14 rs2268952 AKAP6 0 8.21E-09 0.206

RAV_TOT6 11 rs7118965 OPCML 0 16 rs3866638 WWOX 0 9.71E-09 0.243

RAV_TOT 1 rs2883272 RCC2 8100 9 rs7853156 ZDHHC21 0 1.76E-09 0.044

6 rs1743448 KHDRBS2 0 18 rs10401068 DOK6 0 3.45E-09 0.086

1 rs2883272 RCC2 8100 9 rs10961636 ZDHHC21 0 3.74E-09 0.094

No interaction was observed at this threshold for RAV_T30. List of interaction findings for RAV_TB is available in Supplemental Table S2. Bolded records indicate significant interactions

with corrected p ≤ 0.05.

et al., 2010; Marzinke et al., 2013) suggests that it warrants fur-
ther investigation as a potential target in future analyses. In addi-
tion, the expression of NAV3, a paralog of NAV2, was reported to
be enhanced in degenerating pyramidal neurons in the cerebral
cortex of AD (Shioya et al., 2010).

Each of the other five genes (PRKAG2, PTPRD, CELF2,
PDS5B, and PCDH9) is associated with one or two cognitive

scores in our study. Most of them have already been previ-
ously reported as being associated with cognitive impairment.
The PRKAG2 gene provides instructions for making one part
(the gamma-2 subunit) of a larger enzyme called AMP-activated
protein kinase (AMPK), which is a master switch of energy and
plays an important role in metabolism functions. Better perfor-
mance in verbal memories and attention tasks has been found
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for specific genotype groups −26 polymorphism PRKAG2, indi-
cating an active role of PRKAG2 in cognitive impairment (Kim
et al., 2012). This finding has been confirmed recently in another
network based analysis (Caberlotto et al., 2013). Mostly known as
tumor suppressor gene (Stallings et al., 2006; Kohno et al., 2010),
PTPRD was also discovered to have possible functional connec-
tions with neurological disorders (Ghani et al., 2012) and may
have potential interaction with AD marker tau protein (Shulman
et al., 2014). CELF2 functions to induce the exon 2/3 skipping in
MAPT gene, which encodes the AD risk protein tau (Ladd, 2013).
PDS5B, regulator of cohesion maintenance, has been found to be
significantly associated with brain atrophy in Furney et al. (2011).

Unlike the main effect tests, no interactions were observed to
be associated with all cognitive scores. After Bonferroni correc-
tion based on estimated independent genetic and memory QT
numbers, no interaction was found for Log_Delay, RAV_TOT6,
and RAV_T30. A few interaction signals, ranging from 1 to 3,
were found to be associated with Log_IMM, RAV_Recog, or
RAV_TOT. Interestingly, a large number of interactions were
found in RAV_TOTB. Compared with interactions from the
STRING database (Franceschini et al., 2013), no overlap has

been found. We mapped SNPs to genes, and plotted the inter-
action network using Cytoscape (Shannon et al., 2003); see
Figure 3. Enrichment analysis was performed using MetaCore
from Thomson Routers and GSEA (Mootha et al., 2003; Sub-
ramanian et al., 2005), respectively. In MetaCore, we did not
find any enriched pathways with FDR q-value <0.05. Gene set
enrichment analysis in GSEA yielded 77 enriched sets with FDR
q-value < 0.05, which can generally be categorized into 3 groups:
(1) genes with promoter regions containing a specific motif, (2)
targets of microRNAs, and (3) genes in cancer module.

In sum, we have performed single SNP/gene analysis and SNP
interaction analysis on genes highly expressed in the hippocam-
pal region to identify the genetic factors that are jointly associ-
ated with multiple correlated episodic memory scores, in order
to reduce the biases introduced by the noise and outliners in
the individual analysis of each single score. Three genes were
identified to be significantly associated with most of the cog-
nitive scores. NAV2 is a novel candidate risk gene whereas the
other two (APOE and TOMM40) have been previously reported
in AD studies. Although it is not well studied in the AD field, the
essential role of NAV2 in neurite outgrowth and cell migration

FIGURE 3 | Genetic interactions associated with RAV_TOTB. Each link indicates at least one pair of SNPs between two genes reaches statistical

significance with corrected p < 0.05.
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makes it a potential target warranting further investigation.
Unlike the main effect analysis, we did not find any interac-
tion signals that consistently influence all or most of the seven
memory scores. Most memory scores have none or few inter-
action signals observed except RAV_TOTB, which has over 70
interaction pairs passing the significance threshold. Replication
and validation of newly identified interactions warrant further
investigation.
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